大数据文摘出品
作者:Caleb
要说这养猪啊,最近可是发展得红红火火。
2019年,文摘菌就发现了一个奇奇怪怪的招聘,根据主营生猪养殖的牧原食品股份有限公司发布的校招计划,公司针对复旦学子发起“精英管培生”引进计划,给出的薪资标准为:本科生首年月薪20000+,硕士22000+,博士24000+。
这养猪还需要高科技人才了?
还真是这样。
2018年,阿里就宣布,要开启“智能养猪”计划。每一头猪从出生起就要被打上数字ID标签,并围绕此建立起品种、体重、进食情况、运动频次、轨迹、免疫情况等资料在内的数据档案。
农场内的摄像头还会自动扫描这些数字ID,用来观察记录分析小猪的活动情况。通过计算机视觉技术,还能分析出一只猪一天能走多少步——那些运动不够的猪需要被赶出去继续操练。
阿里并非独一家把目光放到了养猪上的大厂。
今年2月,华为也宣布,将通过ICT技术帮助猪场实现智能化养猪,为猪场提供传感器、物联网技术及平台,以实现数字猪场。
但是,俗话说得好,你穿秋裤有两个原因,一个是因为你觉得冷,一个是因为你妈觉得你冷。
要把猪养好,不真正了解它们的心理想法可是不行的。
于是,荷兰瓦赫宁根大学的一位博士Suresh Neethirajan就做了这么一件事。首先,他收集到了全世界6个农场中成千上万头猪的养殖数据,随后他凭此创建了一个AI系统WUR Wolf,用于识别猪的情绪状态。
据了解,在85%的时间内,系统的判断都是准确的。
他希望能够利用这个系统,更好地了解动物的感受,帮助改善他们的生活条件和生活质量。
当然,除了猪以外,这个系统对牛也是适用的。
目前,该项研究已经以论文的形式进行了发表,链接如下:
论文链接:
从耳朵识情绪,你养的猪感受到压力了吗?
论文指出,该系统使用的3780张图像,来自于235头猪和210头牛。
拿到视频或图像后,我们还需要对这些数据进行一些预处理,包括检测面部、面部对齐,以及输入标准化。
收集到的数据根据时间戳和RFID标签和标记进行了标注,面部提取利用到了MIT的LabelImg代码,用于标注不同模型边界框的注释是按照每个模型的标准格式进行的。
然后,我们就需要把农场动物的情绪进行分类,比如猪有6种情绪,牛有3种情绪等,再根据牛、猪的耳朵姿势、眼白等面部特征的相关性,将采集到的分组图像数据集分为9类,包括放松、警惕、兴奋等。
具体而言,如果牛的耳朵直立着,那代表着它目前可能正感到兴奋,但是如果它的耳朵指向前方,那它很有可能正被沮丧等负面情绪困扰着。
与牛类似,要了解猪的情绪状态,也可以直接从耳朵入手。比如,如果猪的耳朵在快速抽动,那表示它们可能正感到压力,如果猪的耳朵垂悬着并朝眼睛的方向翻转,则表明它正处于一种中性状态(neutral state)。
在接受采访时,Neethirajan博士说到:“有必要从单纯消除消极的情绪状态的做法,转变为向动物提供积极的状态,例如嬉戏的行为。”
他认为,这项技术需要数年时间才能真正在农场上实用,不过这种持续的监测所带来的福利,可能比目前的检查和审计系统所能带来的还要高。
论文中写道:“追踪和分析动物的情绪将成为建立动物福利审核工具的一项突破。”
“动物行为领域的技术进步是提高人类对与之共享这个世界的385种动物的理解的巨大一步,但未来仍有较大的发展空间。”
从面部表情理解情绪状况,能做到吗?
但要准确理解动物的情绪,真的这么简单吗?
去年12月,根据一篇发表于Nature的论文表示,世界不同角落的人们在面对生活中最有意义的情境时,表达情感的方式存在相当高的普遍性。
加州大学伯克利分校和谷歌的研究人员使用了一种 “深度神经网络” 的机器学习技术,分析了上传到YouTube上的约600万个视频片段中的面部表情,这些视频来自全球各地144个国家。
同时,研究人员还创建了一个在线互动地图,展示了该算法如何跟踪与16种情绪相关的面部表情变化。