本文作者系阿里云云原生微服务技术负责人,Spring AI Alibaba 发起人彦林,望陶和隆基对可观测和 RocketMQ 部分内容亦有贡献。
摘要
Aliware
随着生成式 AI 的快速发展,基于 AI 开发框架构建 AI 应用的诉求迅速增长,涌现出了包括 LangChain、LlamaIndex 等开发框架,但大部分框架只提供了 Python 语言的实现。但这些开发框架对于国内习惯了 Spring 开发范式的 Java 开发者而言,并非十分友好和丝滑。因此,我们基于 Spring AI 发布并快速演进 Spring AI Alibaba,通过提供一种方便的 API 抽象,帮助 Java 开发者简化 AI 应用的开发。同时,提供了完整的开源配套,包括可观测、网关、消息队列、配置中心等。 01
应用框架发展趋势
Aliware
应用架构历经了单体架构、LAMP 架构、SOA 架构、微服务架构、云原生架构。
下图左边是典型的云原生应用架构,采用了容器 、微服务和声明式 API 技术。其中,微服务按照业务模块进行拆分,架构做无状态改造,将存储下沉到数据库;微服务跑在容器上进行按量伸缩,从而把研发效率和运维发挥到极致。右图的 AI 原生应用架构,则是基于大模型(大脑),Agent 驱动(手脚)进行构建。其中,Agent 有三个架构原则:
API First,开放协同:OpenAI 作为全球最大售卖 API 公司,通过 API 快速构建了生态和营收,加速创新,大模型企业无不例外通过 API 来向外提供服务。
第三阶段:2024 年,随着多模态发展,模型能力持续突破,在过去的两年框架以 Python 为主,但是对于中国 42.9% 的 Java 开发者会选择是什么来构建 AI 应用呢?写 Python?写 Java 版 Langchain / LlamaIndex ?还是基于 Spring 体系进行构建?
02
Spring AI Alibaba 重磅发布
Aliware
随着生成式 AI 的快速发展,基于 AI 开发框架构建 AI 应用的诉求迅速增长,涌现出了包括 LangChain、LlamaIndex 等开发框架,它们为 Python 开发者提供了方便的 API 抽象。但这些开发框架对于国内习惯了 Spring 开发范式的 Java 开发者而言,并非十分友好和丝滑。因此,我们基于 Spring AI 发布并快速演进 Spring AI Alibaba,通过提供一种方便的 API 抽象,帮助 Java 开发者简化 AI 应用的开发,一步迈入 AI 原生时代。
同时,我们发布了配套组件,更完整的帮助 Java 开发者简化 AI 应用的开发。
Higress:作为 AI 网关,支持多模型适配、流式输出、请求/Tokens 限流防护、长连接无损热更新,支持最小请求数负载均衡,并借助丰富的 AI 插件,帮助开发者零代码构建 AI 应用,守住安全合规底线。
OTel:基于开源 Open Telemetry Python SDK 进行了扩展,发布可观测探针,为 GenAI 应用可观测而生,能自动获取大模型调用各个阶段的数据,全面提升 LLM 应用的可观测性。
Apache RocketMQ:支持主动 POP 消费模式,自适应负载均衡,动态消费超时时长,适应不同算力消耗的请求,实时数据驱动 RAG 架构,提升吞吐量和实时性。
Nacos Python SDK:提升灵活性,动态调整提示词模版、算法、相关度等参数。
这一套开源矩阵具备“自用、开源、商业”三位一体的优势,包括:
阿里内部大规模验证,通义 / PAI / 百炼长期打磨。
具备完整的生态和组件,覆盖应用开发的主链路。
支持主流大模型,低代码、甚至无代码构建企业级 AI 应用。
深度集成阿里云百炼、云原生应用开发平台 CAP,开箱即用。
Spring AI Alibaba 已完整提供 Model、Prompt、RAG、Tools 等 AI 应用开发所需的必备能力,将兼具提示词模板、函数调用、格式化输出等低层次抽象,以及 RAG、智能体、对话记忆等高层次抽象。项目地址:https://github.com/alibaba/spring-ai-alibaba
Higress:零代码构建 AI 应用
我们可以很快构建 AI 应用,但是如何确保上线后不出问题呢?
相比 Web 应用,LLM 应用的内容生成时间更长,对话连续性对用户体验至关重要,如何避免后端插件更新导致的服务中断?Higress 使用 Envoy 作为数据面,对网关配置、和连接无关的配置做了合理抽象,并通过 WASM 插件形式实现了热更新,避免后端插件更新导致的服务中断。
相比传统 Web 应用,LLM 应用在服务端处理单个请求的资源消耗会大幅超过客户端,来自客户端的攻击成本更低,后端的资源开销更大,如何加固后端架构稳定性?Higress 提供了 Token 流控能力,并且集成 WAF 插件,在入口建立安全防线。
不同于传统 Web 应用基于信息的匹配关系,LLM 应用生成的内容则是基于人工智能推理,如果保障生产内容的合规和安全?例如近期有两家公司因为内容合规问题导致股市大跌,Higress 通过滤网插件,帮助用户在流量入口处守住了合规底线。
当接入多个大模型 API 时,如何屏蔽不同模型厂商 API 的调用差异,来提升单一大模型的调用失败率?Higress 提供了 AI Proxy 插件,构建高可用 AI 服务,如通义 2.5 失败,Failover 到通义 2.0;或者自建大模型失败,Failover 到通义模型等。
在推理场景,私域数据向量化后,提供给 AI 应用搜索增强,但是这个模式私域数据不能及时更新,为了提升整体链路实时性,可以通过事件流集成关键事件,实时 Embedding 向量数据库、更新私有数据存储,全面提升 AI 应用实时性、个性化和准确度。AI 原生应用请求往往耗时过久,全面采用同步调用会使得系统性能急剧恶化,响应慢,影响客户体验。通过引入RocketMQ 事件驱动架构、解耦快慢服务,能显著提升性能和体验。面临 AI 应用请求耗时方差大,资源消耗不均匀的特点,RocketMQ 支持主动 Pop 消费模式,动态消费超时时长,能够实时结合模型实例负载和推理请求特点,自适应负载均衡。
03
Java AI 开发框架的落地&实践
Aliware
相信通过上面的介绍,大家对于构建生成式 AI 应用已经跃跃欲试了,但是选择哪些场景投入产出比较高呢?下面简单分享一下我们的思路。
AI 落地场景 是不是所有的业务都能用 AI 解决呢?目前看不是的。那 AI 适合做什么场景呢?目前看,适合容错性高、结构化强的场景。我们在做开源社区的时候发现社区的 Issue 非常多,但是无法响应开发者需求,因此我们想如果构建一个 AI 答疑专家,帮助开发者解决场景问题,构建新型开源社区协作模式,这个就非常有价值。因此我们落地第一个场景是 AI 答疑专家,解决开源社区答疑问题,提升开源社区活跃度。 AI 技术选型 我们在技术上有三个技术选型 :Prompt / RAG / 微调。
AI 答疑专家基于百炼的通义 2.5 模型,将开源文档、电子书、常见问题灌入百炼数据中心,进行了向量化;通过 Spring AI Alibaba 对接通义模型和 RAG 能力,搜索到了 TOP3 的相关度信息,进行压缩提炼。并通过 Higress 将服务发布到开源官网和钉钉机器人,在入口构建安全合规防线。最后通过 AI 答疑专家不断与开发者沟通,收集反馈。通过 Chat-Admin 处理反馈差的信息,补充文档,优化数据。
最后我们构建了 AI 行业专家解决方案,沉淀了 AIPaaS 的雏形,以模型未核心,Agent 驱动,充分挖掘私域数据,打造行业 AI 专家!未来,我们将提供 Spring AI Alibaba 和阿里巴巴整体开源生态的深度适配,包括 Prompt Template 管理、事件驱动的 AI 应用程序、更多 Vector Database 支持、函数计算等部署模式、可观测性建设、AI 代理节点开发能力,如绿网、限流、多模型切换和开发者工具集,旨在构建业内最完整的 AI 驱动的 Java 开发框架生态。